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In decision-making problems, the Bayesian action and its posterior

can not be obtained analytically. in this paper we swdy a Monte Carlo method for approximat-

ing the Bayesian action and its posterior expected loss. The Monte Carlo approximation to the

Bayesian action is obtained through k17 apprroximating the posterior expected loss function by

using the Monte Carlo integration method and-(-2- searching the minimum of the approximated

posterior expected loss function. As the Monte Carlo sample size diverges to infinity, the

Monte Carlo approximations are shown to be convergent in very general situations. The rates

of the convergence are also obtained under some regularity conditions on the loss function.

Two accuracy measures of the Monte Carlo approximations are proposed. Some examples are

presented for illustration. '
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1. INTRODUCTION

Many problems in Bayesian analysis can only be solved numerically. In this article, we

study the Monte Carlo method for determining the Bayesian action in a decision-making prob-

lem. Let X be a random n-vector whose distribution has a density f (x 10) (with respect to a

measure v), where Oe ) is an unknown parameter and 8 is a subset of RP. For a particular

problem (e.g., the estimation of 0), a decision is to be made after observing the data X = x.

These decisions are commonly referred to as actions in the literature. We will denote a partic-

ular action by a and the set of all possible actions under consideration by a. Let L (0, a) be

the loss incurred when the action a is taken and 0 turns out to be the true parameter. L (0, a)

is assumed to be a nonnegative function defined on Oxa (measurable in 0 for each a). Sup-

pose that n(0) is the density (with respect to a measure g.) of a prior distribution on 0. The

posterior expected loss of an action a, given the data x, is defined to be

r(a) = feL (0, a)p(Oix)dt,

where

p (0 1 x) = f (x I 0)t(0)/M (X)

is the posterior of 0 and

M(X) = Of (x I 0)i(0)di. (1.2)

A Bayesian optimal action is then an action a* which minimizes r(a), or equivalently, an

action a* which minimizes

p(a) = JeL(0, a)f (x I 0)t(0)dp.. (1.3)

If the problem under consideration does not involve a conjugate prior-likelihood pair or

the loss function is not of a special form (e.g., the squared error loss), this minimization prob-

lem can not be solved explicitly. That is, a* does not have a closed form since the integrals

(1.1)-(1.3) usually do not have explicit forms. Consequently, numerical methods for calculat-

ing the integrals (1.1)-(1.3) and the Bayesian action a* are required. In particular, one useful

method for calculating the posterior moments fog (O)p (0 Ix)dp. is the Monte Carlo method,

which was studied in Kloek and van Dijk (1978), Stewart (1979, 1983) and Geweke (1986,

1988a,b). A Monte Carlo method for calculating the Bayesian action is described as follows:
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Step 1. Choose a probability density h (0) (with respect to j.) such that the support of It (0)

includes that of x(O). Let Ph be the probability distribution corresponding to h (0). Generate

m independent and identically distributed (i.i.d.) random vectors 01, 02,..., 0 m from Ph.

Step 2. Approximate p(a) for any a e a by

pm (a, o) = m-'Xf'L(0i, a)w(i), (1.4)

where co denotes a particular sequence ( 0i }/) and

w (0) = f (x I 8)nr(O)/h (0). (1.5)

Step 3. Find an am (o)ea which minimizes p, (a, co), i.e.,

pm(O)) = pm(am (co), w)) = min[ pm (a, co): a ea }. (1.6)

am=am(co) is the Monte Carlo approximation to the Bayesian action a*. For the compu-

tation of am (co), working with p(a) is preferable to working with r(a) since it avoids the com-

putation of M(x). A Monte Carlo approximation to r(am(o)), the posterior expected loss of

am (co), is rm (co) =pm (co)/Mm (w), where pm (o) is defined in (1.6) and

M (Co) = m-1 jilw(O). rm(co) can also be used to estimate the minimum posterior expected

loss r(a*).

The function h in Step 1 is called the importance function. It should be chosen so that

the random generation process in Step 1 can be easily carried out. The accuracy of the Monte

Carlo approximations depends on the choice of h. Generally speaking, h should mimic the

posterior p (8 lx) and satisfy several technical conditions such as B3, (2.8) and (3.1) in Sections

2 and 3. Extensive discussions on how to choose this function can be found in Berger (1985,

Section 4.9) and Geweke (1988b). In Step 2, we have reduced computation by using the same

random sequence ( Oi J?= for computing pm (a, co) in (1.4) for all aea. Not only does this

method allow us to use a large m, but it also results in certain desirable properties for am,

which will be discussed in the next section. In Step 3, one may employ any available algo-

rithm for solving a minimization problem.

Throughout the paper, we assume that the integrals (1.2)-(1.3) are finite and the likelihood

f (x 10) and the prior x(0) can be evaluated easily when x and 0 are known. No other assump-

tion on f (x I 0) and t(8) is made. Also, there is no restriction on the length of the vector x,
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i.e., the total number of observations. If i(6) is a hierarchical prior of the form

n(o) = ni(0 1 .)n2(%)dr,

where t is a measure on AcRS, then ir(O) is not easy to evaluate (for a given 0) and the gen-

eration of 0's from n(0) may also be difficult. However, we may draw m i.i.d. random

(p +s )-vectors 4=(8j, X1 )' from the distribution with density h(4) (with respect to 4xt on

exA), and compute

P, (a, o) = m-'XdL (0i, a)f (x I0i )7l(6i IX )7r2 (X,)/h (4i).

The rest of this paper is organized as follows. In Section 2, convergence of the Monte

Carlo approximations am (o) and rm (co) is studied. The rates of convergence are also obtained.

In Section 3, we propose two measures which can be used to indicate the accuracy of the

Monte Carlo approximations. Section 4 contains an example of application.

2. LIMITING BEHAVIOR OF THE MONTE CARLO APPROXIMATIONS

2.1. Convergence

Here, an immediate question is whether or not am converges to a* as m diverges to

infinity. Since am=am(co) is a function of random quantity o, we say that am converges to a*

almost surely (a.s.) if for almost all o (with respect to Ph), am (co)--+a * as m --.

To provide an answer to the above question, let us first consider the simple case of finite

action problems, i.e., a consists of finitely many actions a (i), a a(k). The most impor-

tant examples are hypothesis testing and classification problems. See also Example 2 in Sec-

tion 4. Without loss of generality, assume that a(",..., a(i ) are Bayesian actions, where i is an

integer < k. Let e-2-1mini<Ijk( p(a(t))-p(a(1)) }. Since k is fixed, it follows from the strong

law of large numbers (SLLN) that for almost all co, there is an integer m,, such that when
m m ,

pm(a U) , co) < p(a (0) + e = p(a M) + e _ p(a') e < P.m(a co)

holds for any j: i and I >i. This proves that am (co)=a qj ) for a j i, i.e., am (co) is a Bayesian

action for m>m,. From the SLLN, Mm(wO) --+ M(x) a.s. Thus, both r(am(0o)) and rm(co) con-

verge to r(a(')) a.s. If, in addition, the Bayesian action is unique (i=l), then

am(co) -4 a (1) a.s.
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The above results can be extended to the case where a is a compact subset of R . We

state the following result. Its proof uses a similar argument to the above discussion and a uni-

form SLLN and is given in the Appendix.

Theorem 1. Suppose that a is a compact subset of R q . Let

B= a: a is a Bayesian action } (2.1)

and for a fixed w3,

A =[a: a is a limit point of [ a,,, (w))M}.

If L (0, a) is continuous in a for each 0e E and there is a measurable function M (0) such that

sup[ L (0, a): ar=a ) _ M (0) and feM (0)f (x I O)t(0)d I. < ,

then there exists a Bayesian action and the following results hold:

A (oc aB for almost all w3, (2.2)

and

r(am(a))) r (a) a.s. and r .(.() - r(a*) a.s. (2.3)

If the Bayesian action is unique, then am (co) .- a* a.s.

When a * is not unique, am (w3) may not converge since { am (w)] ,= may have several

limit points. However, am (03) can still be used in practice as a good decision since the poste-

rior expected loss of am (o) converges to the minimum posterior expected loss. In addition,

am (co) is close to a Bayesian action in the sense of (2.2). Regardless of uniqueness of a*,

rm (0o) is close to r (am (co)) (or r (a*)) according to (2.3).

Often a is a convex subset of R q (e.g., a =e for an estimation problem) and a is not

compact. In this case, let a' be the closure of a and assume that the loss function L (0, a) is

defined on exa'. Furthermore, let a be an unbounded subset of R . (If a is bounded, then

a, is compact and Theorem 1 applies.) To establish the convergence of am in this case, we

need some additional regularity conditions. In the following, B(c) and N(c) denote the sets

Saea: IIa-a* II = c ] and ( arE a': IIa-a* ii < c } for a positive constant c, where II II is

the Euclidean norm on R.
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Condition A.

Al. a is convex and L(0, a) is a convex continuous function of a for each 0( 8.

A2. r(a)<oe for all aea and there exists an a*ea such that

r(a*) = min[ r(a): aea }.

A3. There is a nonempty set B(c) such that
inf { r (a): a eB(c)}) > r (a*)

A4. There is a measurable function M (0) such that

sup[ L(0, a): aeN(c)} < M(0) and J8 M(O)f(x I0)t(0)d t < oo.

Examples of convex loss functions which are commonly used in the estimation of scalar 6

are the squared error loss (0--a )2 and the absolute error loss 1-a I. See also Example 2 in

Section 4. For vector O=( 0(1),.... (P) )t and a=( a (1),....a) )t, a commonly used loss is the

weighted average of the loss functions Li (0(i), a(')), which satisfies A1 if each L i does.

Under Al, r(a) is convex. Condition A2 simply says that a Bayesian action for the prob-

lem under consideration exists. Let a8 be defined as in (2.1) and

a,={ aea': r(a)=r(a*)}.

Then ac a and a8 = a, iff r(a)>r(a*) for all a in the boundary of a but not in a.
Condition A3 rules out the possibility that r(a) is too flat in the sense that ay is unbounded.

Condition A3 is also necessary for aB to be bounded. A sufficient condition for A3 is that

L (0, a) is strictly convex, which also ensures the uniqueness of the Bayesian action. Condi-

tion A4 is mild since N(c) is compact and L (0, a) is continuous in a.

Theorem 2. Under Condition A, the assertions of Theorem 1 hold (with aB replaced by a,

The proof of Theorem 2 is given in the Appendix. The convergence of am (co) in the

situation where the loss function is non-convex is studied in Shao (1988).

2.2. Convergence Rates and Asymptotic Distributions

The convergence rates and asymptoic distributions of am(o) and rm(co) are obtained

under some further regularity conditions on the loss function. The variances of the asymptotic

distributions can be used as accuracy measures of am (co) and r.. (o) (see Section 3). Let
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L'(0, a) and L"(0, a) be the gradient aL(0, a)/aa and the Hessian mat -aL(0, a)/ a a',

respectively.

Condition B.

B 1. A1 and A2 hold.

B2. For each 0, L (0, a) is a twice continuously differentiable function of a in a

neighborhood N(c) of a*.

3. f.IIL'(0, a')112 w2(0)h(O)dit < -, where w(0) is defined in (1.5).

B4. There is a measurable function v (0) such that for any (k, 1),

sup( IL" (0, a)I: aeN(c)} < v(0) and ev (O)f (x 10)7r()d<oo,

where L't (0, a) is the (k, l)th element of L"(0, a).

B5. L"(0, a*) is positive definite for each 0.

Condition B5 implies that fL"(E, a *)f (x I 0)t(0)dit is positive definite. Under Condition

B, A3 and A4 are satisfied and a* is unique. Hence am (co) converges to a * a.s.

Theorem 3. Under Condition B, we have

a,.(co) - a* = O(mh'I(loglogm)'I') a.s., (2.4)

r(am(co)) - r(a*) = O(m-loglogm) a.s. (2.5)

and

m"'(am (o)) - a) -4d N(0, T), (2.6)

where -4d denotes convergence in distribution and

1; = Li.,2-lziY2-  (2.7)

with

= J['(0, a'*)][L'(0, a* )],w 2(0)h()d g

and

= feL"(0, a )f (x I 0)n(0)d it.
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If

a e=fI,[L(O, a*) - - (a* )]2p 2(O Ix )lh(0)dp. < (2.8)

then

rm(co) - r(a*) = O(m-'/'(loglogm)'2) a.s., (2.9)

r,(o) - r(am(o)) = O(m-'(loglogm)'b') a.s., (2.10)

m/'(r,,(co) - r (a * N N(0, r,2  (2.11)

and

m' (rm (co) - r (aO (r))) a N (0, (y2). (2.12)

The proof is given in the Appendix.

An important special case is the problem of estimating 0 with loss L (0, a)= II 0-a 112,

0 9EcR P , a e a cRP . The Bayesian action is the posterior mean and
m- Ontif (x I0i )ic(0 i )lh (0 i )

am (wO) =  -
m !nj=f (xl j )7r( Oi ) 1h (Oi )

A straightforward calculation shows that

a = f(0-a* )(-a* ),tp 2(0ix )/h (0)dp.

and

, 2 11 i _a*, - r(a)]2 p2 (OIx)/h(O)d t."

When h (0) is the posterior density p (0 Ix), 7 reduces to the posterior covariance matrix. The

posterior expected loss of am (co) in this case is

r(am(co)) = r(a*) + IIam(co)-a* 112

= r(a*) + O(m-1 loglogm) a.s.

Conditions B3 and (2.8) suggest that the importance function h (0) should be selected so

that the tails of h (0) are heavier than the tails of the posterior p (0 I x). Note that the posterior

mean and variance of L(0, a*) are r(a*) and o 2 = ,2 with h (0)=p (O Ix), respectively. From

Theorem 3, the standard error due to Monte Carlo approximation is the fraction (yn)-'/ of (y,
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where y-a 2/q, is called the relative numerical efficiency (Geweke, 1988b). This may lead to a

guide to choosing the importance function h (0) and the Monte Carlo approximation sample

size m. See the discussions in Geweke (1988a,b).

3. MEASURES OF ACCURACY

In pr;ctce, it is also desirable to indicate the precisions of am (co) and rm (co) (as approxi-

mationz to the Bayesian action and posterior expected loss of am (co), respectively) by usinz

some measures of accuracy. A nice feature of the Monte Carlo method is that accuracy esti-

mates of am (co ) and rm (to) can be computed. With a method of estimating the precision of

am (to), the Monte Carlo sample size m can be chosen by using an iterative method. That is,

starting with an initial io, we compute am, and Pmj (an estimate of the precision of ama) for

mj=mo+jt, where t is a step size and j=0,1,2.... Stop if Pmj is less than a predescribed small

number. This method is used in Example 2 of Section 4.

We discuss two accuracy measures of the Monte Carlo approximations and study them in

an illustrative example.

3.1. Asymptotic Variance Approach

The variances of the asymptotic distributions of am(o) and rm(o)) can be used as accuracy

measures. Since in general, 7 (2.7) and a,2 (2.8) do not have closed forms, they have to be

approximated by the Monte Carlo approximations

v'a= Vj- 1VIV-

and

V, = m- im__1 [L(Oi, am(co)) - rm (o)] 2 w 2(6i)/[Mm(o)]2

respectively, where

V 1 = m-l7i21 l[L'(0 i , am(co))][L' (0i, am(o))]zw 2(0i)

and
V 2 =-~m' 1 L"(O, am(wo))w(Oi).

The estimated asymptotic variances Va/m and V~n/m can then be used as accuracy measures

of am (to) and r. (co), respectively. The following theorem proves the almost sure convergence
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of these approximations.

Theorem 4. Assume the conditions in Theorem 3. If, in addition, there is a measurable func-

tion u (0) such that

sup[ IL'(0, a)112: aeN(c)} u(0) and fou(O)w2(e)h(O)dg <00, (3.1)

then

Va -4 a.s. and Vm - a, a.s.

Proof. The results follow from the convergence of am and Theorem 2 of Jennrich (1969). [

3.2. Independent Samples

In some situations (e.g., a is a finite set or L (0, a) is not differentiable), the asymptotic

variance approach does not apply. Another method for obtaining accuracy measures of am (Wi)

and rm (co) is as follows: we repeat the calculation of the Bayesian action (with independent

sets of random O's) and compute the sample variance. Suppose that m=gk and we generate

(from Ph) g independent sets of random variables (oy=(0j ..... kj), j=l,...,g. Calculate the

ak(COj), Pk(Oj), rk(oj) according to (1.6), j=l,...,g, and the sample variances

Sgk = (g-am)-'F,=(ak(o~j)"-ffr)(ak(Oj)-fr) , Ym = g- 1Yfak(coj) (3.2)

and
Sgrk = (g~-1-$ j=(rk((Loj)-_7) 2  Fn=gi lrt((Loj).

g g and Sgk/g are then used as accuracy measures of am (co) and rm (CO), respectively.

The motivation of the use of independent samples for assessing the accuracy of am (C)

and rm (co) are intuitively obvious. Unlike the asymptotic variance approach, this method does

not require conditions B and (3.1). But it may require more computations if the computation of

am (co) involves a difficult minimization problem, since it needs to solve the same minimization

problem g times.

Usually k should be chosen to be large and g may be chosen to be small or moderate (for

computational saving). For example, if m=10,000, we may choose g=10 (k=l,000). Unless

both g and k are large, the accuracy estimates obtained by using asymptotic variance approach

and independent samples may be different (see Example 1).

9



When independent samples are used, to reduce the computation, we may use 11m defined

in (3.2) as the Monte Carlo approximation to a*. This is specially preferred if the computation

of am is expensive. Although am and Em are generally different, the difference is usually inap-

preciable for large k.

3.3. An Example

We study the accuracy estimates Va and Sgk in an illustrative example where the exact

values of a* and the asymptotic variance Z can be obtained and therefore we can assess the

Monte Carlo approximations.

Example 1. (Berger, 1985, Section 4.3). Let X - N(0,1), where 0 is a measure of some

positive quantity. In this case, it is difficult to estimate 0 by using the classical approach. For

example, the maximum likelihood estimate of 0 is max( x, 0 ), which is unsuitable if the

observation x < 0. Under the noninformative prior it(0)= 1(o,*.)(0), the posterior mean of 0 is

= X + (x)/x,

where c?(x) is the standard normal distribution function and O(x)=4)'(x). In this case, no

Monte Carlo approximation for ., is needed. To see the accuracy of the Monte Carlo approxi-

mations, ten independent sets (each of size m=5,000) of random variables are generated from

the density h (0)=e-el(0, *)(0) and the Monte Carlo approximations a. and vm = (Va/m)/ are

calculated and reported in Table 1 for x=1.5, 0.5 and -0.5. The exact values of the posterior

mean g,, and the asymptotic standard deviation a = (/m)'12 are included. Both am and vm are

quite accurate.

For comparison, we also include Sm= (Sk)/, (g=10, k=5,000) in Table 1. In all three

cases, s.. is quite different from vm (or Y), even though k=m=5,000. This is not surprise since

g=10 is smail.

3.4. Concluding Remarks

(1) ,'Then the loss function is differentiable, accuracy estimates based on asymptotic variances

are recommended. The importance function h (0) should be chosen so that conditions (2.8) and

(3.1) are satisfied.
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(2) When the asymptotic variance approach can not be applied, use independent samples to

estimate the accuracy of the Monte Carlo approximations.

(3) In some situations, it may be appropriate to focus on relative accuracy measures such as
lam I and sa"/ I E , where v,'=(Vm,/m)'/2 and sm=(S' Ig )'/ are asymptotic standard devia-

tions.

4. NUMERICAL IMPLEMENTATION

In some situations, the minimization problem in Step 3 can be solved analytically, e.g.,

a* is a posterior moment or quantile. However, there are situations where am (co) can only be

obtained numerically. There is a large body of literature on optimization and nonlinear pro-

gramming which provides many efficient algorithms for solving rain( Pm (a, (0): a e a }. See

Avriel (1976) and Rao (1984), which also provide many other references.

As we discussed in Section 1, the same random [ 0i should be used for approximating

p(a). If storage is not a problem, we may reduce computations by storing ( w (0 ) and com-

puting p,,.m(a, ca) = m -1Y L(0i, a)w(O) for all needed a, where w(0) is defined in (1.5).

In the following we use an example to illustrate the numerical implementation of the

Monte Carlo method in practical problems.

Example 2. A company has developed a new type of product and must decide the number of

the new products (denoted by a) to produce based on a marketing survey. Let 0 be the unk-

nown proportion of customers who will favor the new product.

(1) Likelihood function. A sample of 36 customers was interviewed and 11 of them indicated

that they favor the new product. Hence the likelihood function is (1)0"(1-0)".

(2) Loss function. Using the method introduced in Becker, DeGroot and Marschak (1964),

DeGroot (1970, Chapter 7) and Berger (1985, Chapter 2), we obtain the company's loss func-

tion

S-2,500,000ca + I a < cO/2
L (0, a) = 10,562,5000-1(8a/13-c0/2)2 - 1,640,625c 20 + I c0/2 < a 5 cO

1,500,000c (a-2c 0) + I a > c0
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where c=2xlO and 1=1,640,625c 2. Here, Oe@=(0,1) and aea =( all the integers < c ).

(3) Prior distribution. It is felt that 0.2<0<0.5 is twice as likely as 0<0.2 or 0_>0.5 and there is

no other information about 0 available. Thus, we use the vague prior

(2/9)!(0.2,0.5)(0) + (1/21)[1-1(0.2,0.5)(O)].

Neither the posterior expected loss nor its Monte Carlo approximation has a closed form

in this problem. Note that a contains finitely many actions. However, the number of actions

is so large that it is too expensive to evaluate Pm (a, (o) for all actions. Since L (0, a) is a con-

vex function of a, we used the golden section method (see Avriel, 1976) with 24 evaluations

of Pm (a, co) to find the Monte Carlo approximation to the Bayesian action a*

To assess the accuracy of the Monte Carlo approximations, we used independent samples

(Section 3.2) since the asymptotic variance approach is not applicable to this case. The follow-

ing iterative method was used for selecting a Monte Carlo sample size: Compute ami and F

for mj = (ko+jt)g, j--0,1,2,..., with step size t=l,000, g=10 and initial k 0=l,000 (m0=10,000).

At each iteration, the relative accuracy measures ca = sa15. and c, = sf'IF. were computed,

where s,,, = (Sk/g)/' and s, = (Sak/g)2. Stop if both a and c are less than 0.001.

The importance function was chosen to be proportional to the likelihood function. The

random Oj's were generated by using the IMSL subroutine GGBTR. The computation was

done (after four iterations) on a VAX 11/780 (Unix 4.3BSD) at Purdue University. The total

CPU time used is about 1.96 minutes.

The selected Monte Carlo sample size is m=40,000 and the resulting Monte Carlo approx-

imations to a* and r(a*) are 51,223 and 459,861.09, respectively. Table 2 shows the accuracy

measures and the results from four iterations.

APPENDIX

Proof of Theorem 1. The existence of a Bayesian action is guaranteed by the continuity of

r(a). From Theorem 2 of Jennrich (1969), for almost every o,

pm (a, co) -+ p(a) uniformly in aea.

Suppose that a' eA,. Then by compactness of a, a' ea. Consequently, there is a sequence

{mj }= such that a,,j(wo) -- a' and pm,(amj(o), o) -4 p(a'). Since for a*ea B ,
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p,(am((o), co) < pmj(a*) -* p(a*), p(a')<p(a*) and therefore a'Ba 8 . Thus, AO c aB.

If a * is the unique Bayesian action, then a (o) -- a*, p(a, (()) -+ p(a*) and

Pm (am (w), o)) -- p(a *). Hence (2.2) and (2.3) hold since Mm -4M (x) a.s.

In the case where a* is not unique, let p' be a limit point of £ pm(am(w}), co) },=. Then

there is a sequence [ mj )= such that p,,,(am((o)), co) - p'. From the compactness of a,
there is a subsequence [ m) ]Ic( mj ]}=1 such that a.,(o))-- a'. By the above proof,

Pm,(am,(co), co) -4 p(a') = p(a*). Thus, p=p(a*) and

rm (co) = Pm (am (co), co) -+ p(a*).

Similarly, we can show that p(am(ca)) -+ p(a*) and therefore (2.2) and (2.3) hold. 03

Proof of Theorem 2. From the proof of Theorem 1, the result follows if for almost all co,

there exists an m. such that

am(o)6N(c) for all m > m... (A1)

Let e be such that e>O and inf ( p(a): aeB(c)) > p(a*) + 2e. From Condition A and

Theorem 2 of Jennrich (1969), for almost all co, there is an m.) such that when m>_m,

I pm (a, o) - p(a) I < . for all a e N(c). (A2)

Let bm (co) be such that

Pm (bm (co), co) = min( Pm (a, Co): ae N(c)). (A3)

For a fixed mn ., suppose that Iam(o))-a* II>c. Then there exist an am(co)eB(c) and a X

such that O<X:l and am(ci)=Xbm (ci)+(1X-?)am (co). By the convexity of L (8, a),

Pm (a* (o)), Co) < Xpm (bm (w), Co) + (-Xl)p n (am (w), (o)

5 pm(bm,(o)), Co)) 5 p (am* (w), o)),

i.e., Pm (b (CO), co) = Pm (am (w), oQ) However, from (A2),

pm(a*, co) < p(a) + e < inf ( p(a): aeB(c)} -e

: p(a,(o)) - S < Pm (am* (w), o) = pm(bm (o)), Co),

which is contrary to (A3). Thus, (Al) holds. 3

13



Proof of Theorem 3. By Theorem 2, we may focus on the event { a.. (o)e N(c) }. Under

B2-B4, p'(a)=fJL'(0, a )f (x I O)t(O)dgt is continuous on N(c) and

p'(a*) = I L'(0, a*)f (x I0)t(0)dg = 0. (A4)

Note that YinL' (0j, am (co))w (O)=0 under B2. By the mean value theorem and (A4),

m1 1niL' (0i , a*)w(Oi) =-[m-lZnlL"(0j, 2mj)W(O)](am(co)-a*), (A5)

p(am (co)) - p(a*) = kam (co)-a * )T[p"(am2)](am (o)-a*) (A6)

and

rm (co) - pm (a* ,co) = m-[Y!nL'(e i , am3 )](am (c)a*), (A7)

where amj, j=1,2,3, are on the line segment between a* and am (co). From B4 and Theorem 2,
m-1T m .,(A8)

m LZL"(9i I amOiW (0i) -+ Z a.s.

Hence we obtain (2.4) by applying the law of iterated logarithm to each component of the left

hand side of (A5). Also, (2.5) follows from (2.5), (A6), the continuity of p"(a) and

Mm --M (x) a.s. From the central limit theorem, (2.6) follows from (A), (A8) and Theorem 2.

If ay2 is finite, by the law of iterated logarithm,

rm (a* ,co) - r (a*) = O (m-'I(loglog m )'h2) a.s. (A9)

where rm(a* ,C)) = Pm(a ,(o)/Mm(o). From B2-B4, (A4) and Theorem 2 of Jennrich (1969),

m 1 jinL'(0 i , am3 ) -- 0 a.s. (Al1)

Hence (2.9) follows from (2.4), (A7), (A9) and (A10), and (2.10) follows from (2.5) and (2.9).

From the central limit theorem and Mm -4 M(x) a.s.,

m'h[rm(a*,co) - r(a*)) d N(0, a,2). (All)

Then (2.11) follows from (A7), (AlO), (All) and (2.6). Finally, (2.12) follows from (2.5) and

(2.11).1
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Table I
Monte Carlo approximations to g, and o (Example 1)

( h (0) = e -0( 0, )(0), m=5,000 )

x = 1.5 x = 0.5 x = -0.5
= 1.6388 = 1.0091 ]s = 0.6412

__ = 0.015230 a = 0.009418 =0.006580
i a,. a, vm a. v.
1 1.6540 0.015389 1.0063 0.009581 0.6310 0.006559
2 1.6307 0.014763 1.0271 0.009275 0.6602 0.006682
3 1.6149 0.015108 1.0033 0.009359 0.6409 0.006526
4 1.6339 0.015107 1.0118 0.009407 0.6443 0.006576
5 1.6325 0.015632 0.9986 0.009285 0.6421 0.006471
6 1.6573 0.015331 1.0114 0.009530 0.6378 0.006605
7 1.6915 0.015439 1.0219 0.009605 0.6382 0.006653
8 1.6595 0.015293 1.0173 0.009413 0.6483 0.006598
9 1.6186 0.015091 1.0070 0.009333 0.6430 0.006584
10 1.6555 0.015415 1.0054 0.009512 0.6330 0.006595

mean 1.6448 0.015257 1.0110 0.009430 0.6419 0.006585
s,. = 0.021902 s. = 0.008367 s. = 0.007819

Table 2
Results from four iterations (Example 2)

. m a,. s,* c_ r sr cr

0 10,000 51,137 75.15 0.0015 460,042 211.39 0.0005
1 20,000 51,195 74.87 0.0014 460,068 220.82 0.0005
2 30,000 51,195 60.35 0.0012 460,037 169.24 0.0004
3 40,000 51,223 40.42 0.0008 459,861 122.52 0.0003
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